A risk-neutral equilibrium leading to uncertain volatility pricing

نویسندگان

  • Johannes Muhle-Karbe
  • Marcel Nutz
چکیده

We study the formation of derivative prices in equilibrium between risk-neutral agents with heterogeneous beliefs about the dynamics of the underlying. Under the condition that short-selling is limited, we prove the existence of a unique equilibrium price and show that it incorporates the speculative value of possibly reselling the derivative. This value typically leads to a bubble; that is, the price exceeds the autonomous valuation of any given agent. Mathematically, the equilibrium price operator is of the same nonlinear form that is obtained in single-agent settings with strong aversion against model uncertainty. Thus, our equilibrium leads to a novel interpretation of this price.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option Pricing with Markov Switching in Uncertainty Markets

In this paper, we present a stock model with Markov switching in the uncertainty markets, where the parameters of drift and volatility change according to the states of a Markov process. To price the option, we firstly establish a risk-neutral probability based on the uncertain measure given by Liu. Then a closed form of the European option pricing formula is obtained by applying the Laplace tr...

متن کامل

Volatility Smile in Option Prices May Reflect Heterogeneous Expectations: Theory and Empirical Evidence

If the underlying asset price process is unknown, arbitrageurs may not have sufficient incentive and confidence to use the underlying asset to arbitrage options. The option market makers can hedge their portfolios of temporary option inventories without the underlying asset, but investors’ risk attitudes and heterogeneous expectations could become relevant to option pricing. This paper shows th...

متن کامل

Properties of Equilibrium Asset Prices Under Alternative Learning Schemes

This paper characterizes equilibrium asset prices under adaptive, rational and Bayesian learning schemes in a model where dividends evolve on a binomial lattice. The properties of equilibrium stock and bond prices under learning are shown to differ significantly. Learning causes the discount factor and risk-neutral probability measure to become path-dependent and introduces serial correlation a...

متن کامل

An Affine Model of Long Maturity Forward rates, with Predictable Risk Premium

Distantly maturing forward rates represent the markets long term (risk neutral) expectations about interest rates. As such, they are the fundamental ingredient of the pricing kernel. In most equilibrium models, interest rates mean revert, and long forward rates are asymptotically constant. However, from US Treasury STRIPs data, forward rates slope increasingly downwards, and do not attenuate in...

متن کامل

Pricing of Futures Contracts by Considering Stochastic Exponential Jump Domain of Spot Price

Derivatives are alternative financial instruments which extend traders opportunities to achieve some financial goals. They are risk management instruments that are related to a data in the future, and also they react to uncertain prices. Study on pricing futures can provide useful tools to understand the stochastic behavior of prices to manage the risk of price volatility. Thus, this study eval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finance and Stochastics

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2018